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What is Semi-supervised Learning (SSL)?

Semi-supervised learning (SSL) (Chapelle,2009; Zhu,2005) aims to
improve the learning problem in the case that small amounts of labeled
data and relatively large amounts of unlabeled data are available. SSL has
been widely used in many machine learning applications when annotating
training data is time-consuming, costly and error-prone.
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Related Work and Motivation

A plenty of SSL algorithms have been proposed in the literature. They are
built on various assumptions of the given data, including

generative models (Druck and McCallum, 2010)

graph-based methods (Chapelle, Scholkopf, and Zien, 2009; Joachims
2003)

embedding learning (Weston, Ratle, Mobahi, and Collobert, 2012)

density-region approaches (Joachims, 1999)

The fundamental assumption of the graph-based methods is that: the data
is embedded in a low-dimensional manifold that may be reasonably
expressed by a graph, where each vertex is associated with an input data
point and the weight of each edge represents the similarity between two
vertices, so that nearby vertices are more likely to have the same labels.
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Local and Global Consistency (LGC) (1) (Zhou et al. NIPS, 2003)

Given a dataset X = [x1, . . . ,xn] ∈ Rd×n and a label set Y = {1, . . . , c},
the first l data have labels denoted by {(xi, yi)}li=1 where yi ∈ Y, and the
rest of data are unlabeled.
LGC builds on the following two assumptions:

Local assumption: nearby points are likely to have the same label;

Global assumption: points on the same structure (e.g., clusters or
manifold) are likely to have the same label.

Let F =

[
Fl
Fu

]
∈ Rn×c be the classification matrix of X where the label of

the ith data point can be obtained by

yi = arg max
j∈{1,··· ,c}

Fi,j ,∀i = 1, . . . , n. (1)

Accordingly, the class labels of X can be encoded as Y ∈ [0, 1]n×c where
Yi,j = 1 if xi is labeled with yi = j, and Yi,j = 0 otherwise.
Yi,j = 0,∀j = 1, . . . , c, there is no bias to any specific label for unlabeled
data.
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Local and Global Consistency (LGC) (2) (Zhou et al. NIPS, 2003)

Mathematically, to formulate the local assumption, a non-negative
symmetric matrix W ∈ Rn×n+ with diagonal elements as zeros is
introduced, and the optimal F that satisfies the local assumption is
transformed to minimize the following objective function

LW (F ) =
1

2

n∑
i,j=1

Wij

∣∣∣∣∣
∣∣∣∣∣ 1√
Dii

Fi −
1√
Djj

Fj

∣∣∣∣∣
∣∣∣∣∣
2

fro

= trace(FT (In − S)F ) (2)

where D is a diagonal matrix with Dii =
∑n

j=1Wij ,∀i = 1, . . . , n and

S = D−1/2WD−1/2. Note that In − S is a normalized graph Laplacian
matrix over W .
By minimizing LW (F ) with respect to F , it imposes that xi and xj
should have the same label according to (1) since 1√

Dii
Fi ≈ 1√

Djj
Fj if

Wi,j is large. Hence, nearby points xi and xj measured by a large Wij

should have the same label that can be enforced by minimizing (2).
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Local and Global Consistency (LGC) (3) (Zhou et al. NIPS, 2003)

The global assumption is formulated by a square loss given by

LY (F ) = ||F − Y ||2fro (3)

which means a good classifier should not change too much from the initial
label assignment. LGC is proposed to solve

min
F

LW (F ) + µLY (F ) (4)

where µ is the trade-off between local and global objectives. Problem (4)
has the closed form solution

F = µ((1 + µ)In − S)−1Y. (5)

It is worth noting that the analytic solution (5) is impractical for data with
large n since the affinity matrix W needs O(n2) storage and the
computation complexity to calculate the inverse of an n by n matrix is
O(n3).
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Anchor Graph Regularization (AGR) (1) (Liu et al. ICML, 2010)

AGR is proposed by constructing W from a stochastic matrix Ẑ ∈ Rn×k,
where k is the number of anchor points and k � n. Two approaches are
used to obtain Ẑ.
Let {u1, . . . ,uk} ⊂ Rd be a set of anchor points, which are the centroids
of the k-means method over X with the number of clusters as k.

One is from the Nadaraya-Watson kernel regression

Ẑi,r =
Kh(xi,ur)∑

r′∈Ni
Kh(xi,ur′)

,∀r ∈ Ni, (6)

where the Gaussian kernel Kh(xi,ur) = exp(−||xi − ur||/2h2).
The other is the local anchor embedding (LAE) by solving:

min
Ẑ

1

2

n∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣xi −

∑
j∈Ni

Ẑi,juj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(7)

s.t.
∑
j∈Ni

Ẑi,j = 1, Ẑi,j ≥ 0,∀i, j ∈ Ni, Ẑi,j = 0,∀i, j 6∈ Ni. (8)

This problem can be decomposed into n optimization subproblems.
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Anchor Graph Regularization (AGR) (2) (Liu et al. ICML, 2010)

Note that the simplex constraints can promote sparsity of Ẑi,j with

j ∈ Ni. Hence, the final Ẑ can be as sparse as the ŝ-nearest neighbor
graph. The basic assumption is that any data point xi can be represented
by a convex combination of its closest ŝ anchors, and the coefficients are
preserved for the weights in the nonparametric regression.
The affinity matrix W is then constructed from Ẑ by

W = ẐΛ−1ẐT , (9)

where Λ ∈ Rk×k is a diagonal matrix with Λjj =
∑n

i=1 Ẑi,j . Specifically,

Wi,j =

k∑
r=1

Ẑi,rẐj,r∑n
i′=1 Ẑi′,r

, ∀i, j. (10)

Note that
∑

jWi,j =
∑k

r=1 Ẑi,r = 1, ∀i. Hence, the graph Laplacian
matrix of W is diag(W1n)−W = In −W , so it is normalized.
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Anchor Graph Regularization (AGR) (3) (Liu et al. ICML, 2010)
Let

p(ur|xi) = Ẑi,r, p(vj |ur) =
Ẑj,r∑n
i′=1 Ẑi′,r

. (11)

A bipartite graph consists of vertexes {xi}ni=1 and anchor points {ur}kr=1
is defined as (9). It is clear that

p(xj |xi) =

k∑
r=1

p(ur|xi)p(xj |ur) = Wi,j . (12)

As a result, W is the transition matrix over the bipartite graph from one
vertex to the other. (one step of random walk)
Although the anchor graph has nice properties such as the normalized
graph Laplacian matrix and the random walk probability interpretation, the
heuristic construction based on the k-means method for anchor points and
the strong assumption of linear reconstruction of data points from anchor
points can degrade the learning performance from labeled and unlabeled
data.
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Contributions:

A subset of representative points are learned from the input data, each of
which governs a nearby part of high-dense regions. Moreover, the graph
structure such as a spanning tree is learned simultaneously to capture the
similarity among these high-dense points.

A novel graph construction approach is proposed to take the advantage of
both the assignment of each input data to its high-dense points and the
graph over these high-dense points. We prove that given the set of anchor
points, the graph construction in AGR is a special case of our proposed
approach.

We demonstrate that our constructed graph can be efficiently incorporated
with two variants of graph-based SSL methods including the approach used
in local and global consistency (LGC) and its variant of learning a linear
prediction function in AGR. We show that both SSL methods have linear
computation complexity with the number of input data. We show that our
methods outperform baselines significantly for datasets with extremely small
number of labels.
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Intuition
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Figure: The graph construction by three methods (LGC, AGR and our proposed
method) on three-moon data. (a) the three-moon data points in 2-D space using
the first two features. (b) the 10-NN graph used in LGC. (c) the anchor points
obtained by the k-means method with 100 centroids. (d) the optimized
high-dense points and the learned tree structure.
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Our Method (1): High-dense Points Learning
Given data {xi}ni=1, we seek a set of points that can represent the high
density regions of the data. For the ease of reference, we name them as
the high-dense points denoted as {cs}ks=1. To model the density of data,
we employ kernel density estimation (KDE) on {cs}ks=1 to approximate the
true distribution of data by assuming that the observed data {xi}ni=1 is
sampled from the true distribution. Applying KDE to estimate xi over
high-dense points leads to the following density function,

p(xi|{cs}ks=1) =
(2π)−

d
2

kσd

k∑
s=1

exp(− 1

2σ2
||xi − cs||2), (13)

To obtain the optimal set {cs}ks=1, we can do the maximum likelihood
estimation by solving the following maximum optimization:

{c∗s}ks=1 := arg max
{cs}ks=1

log

n∏
i=1

p(xi|{cs}ks=1). (14)
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Our Method (1): High-dense Points Learning
We can further simplify its objective function as

f(C) =

n∑
i=1

log

k∑
s=1

exp(− 1

2σ2
||xi − cs||2). (15)

We have the following equation, ∀s:

n∑
i=1

Zi,s(xi − c∗s) = 0⇒ c∗s =

n∑
i=1

Zi,s∑n
i=1 Zi,s

xi, (16)

where

Zi,s =
exp(− 1

2σ2 ||xi − c∗s||2)∑k
s=1 exp(− 1

2σ2 ||xi − c∗s||2)
,∀i, s. (17)

Hence, problem (14) can be solved by fixed point iteration in terms of
equation (16).
It is worth noting that the high-dense points are different from centroids
obtained by the k-means method. Maximizing (14) with respect to cs is
an iteration step towards the high density p(X|cs) over the input data.
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Our Method (2): Learning Connectivity Over High-dense Points

Let T = (V, E) be a spanning tree with V as the vertexes and E as the set
of edges. Given the set of high-dense points {cs}ks=1, we assign each point
cs to a vertex of the tree T , i.e., V = {cs}ks=1, the number of vertexes in
the tree T is k. Let G ∈ {0, 1}k×k be the connectivity matrix where
Gi,j = 1 means ci and cj are connected, and Gi,j = 0 otherwise. T is an
undirected graph, so G is symmetric.
By combining the connectivity learning with the high-dense points
learning, we propose a joint optimization problem as:

max
C,G∈T

f(C)− λ1
4

k∑
r=1

k∑
s=1

Gr,s||cr − cs||2 (18)

where λ1 is a parameter to balance the two objectives.
We consider to solve C and G alternatingly.

Why tree structure? Simplest connected graph. The transition between
any two points xi and xj can be connected by their corresponding
high-dense points cr and cs.
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Our Method (2): Learning Connectivity Over High-dense Points

Suppose G is given. We obtain the first order optimality condition over C[
n∑
i=1

Zi,1(xi − c1), . . . ,

n∑
i=1

Zi,k(xi − ck)

]
− λ1CL = 0 (19)

where L = diag(G1k)−G is the graph Laplacian matrix over G. We have
the closed-form solution for optimization problem (18) with variable C:

C = XZ(Ξ + λ1L)−1. (20)

Given C, problem (18) with respect to variable G can be efficiently solved
by the Kruskal’s algorithm for finding a minimum-cost spanning tree.
Hence, problem (18) can be solved by alternating the Kruskal’s algorithm
for G given C and the fixed point iteration method for updating C given
G until convergence.
We aim to recover the graph over the input data using high-dense points
C, assignment matrix Z, and their connectivity G.
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Our Method (3): Graph Construction
After obtaining C, Z and G, we propose to construct the affinity matrix
W ∈ Rn×n by the following equation[

W A1

A2 A3

]
= P 2(In+k − αP )−1, (21)

where α ∈ (0, 1), and

P = diag

([
0n×n Z
ZT ηG

]
1n+k

)−1 [
0n×n Z
ZT ηG

]
(22)

=

[
0n×n diag(Z1k)−1Z

diag(ZT1n + ηG1k)−1ZT ηdiag(ZT1n + ηG1k)−1G

]
=

[
P11 P12

P21 P22

]
=

[
0n×n Z
P21 P22

]
.

0n×n is the n by n zero matrix, A1, A2 and A3 are dummy variables for
representing W in a compact form. P11 = 0n×n, P12 = Z since Z1k = 1n.
η is a positive parameter to balance the scale difference between Z and G.
Z is a positive matrix with Zi,s > 0, ∀i, s as defined in (17), and G is a
0-1 matrix. The matrix inverse defined in (22) always exists.
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Properties of Matrix P and W
Proposition

Let P ∈ R(n+k)×(n+k), and suppose (In+k − αP )−1 exists. Then
P 2(In+k − αP )−1 = (In+k − αP )−1P 2.

Proposition

The eigenvalues of matrix P are real, and lie in [−1, 1].

Proposition

Suppose α ∈ (0, 1), W defined in (21) is symmetric and nonnegative.

Matrix W is symmetric, but the whole matrix P 2(I − αP )−1 defined in
(21) is not necessarily symmetric.

Proposition

Suppose Ẑ defined in (7) is equal to Z defined in (17). If η = 0 or G = 0
and α = 0, W defined in (21) is the same as anchor graph (9).
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Our Method (3): Graph Construction

For convenience of discussion, we denote

Q =

[
0n×n Z
ZT ηG

]
, E = diag(ZT1n + ηG1k) (23)

and

Γ = diag(Q1n+k) =

[
In 0
0 E

]
, (24)

then P = Γ−1Q and P1n+k = 1n+k, which satisfies the probability
property over each row.
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Our Method (3): Graph Construction

(In+k − αP )−1 =

[
In −αZ

−αE−1ZT Ik − αηE−1G

]−1
=

[
L11 L12

L21 L22

]
, (25)

where

L11 = In + α2Z(Ik − αηE−1G− α2E−1ZTZ)−1E−1ZT ,

L12 = αZ(Ik − αηE−1G− α2E−1ZTZ)−1,

L21 = α(Ik − αηE−1G− α2E−1ZTZ)−1E−1ZT ,

L22 = (Ik − αηE−1G− α2E−1ZTZ)−1.

Then
W = ZE−1ZTL11 + ηZE−1GL21, (26)

A1 = ZE−1ZTL12 + ηZE−1GL22,

A2 = ηE−1GE−1ZTL11 +
(
E−1ZTZ + η2(E−1G)2

)
L21,

A3 = ηE−1GE−1ZTL12 +
(
E−1ZTZ + η2(E−1G)2

)
L22.

Substituting L11 and L21 into (26) and simplifying, we get:

W = Z(Ik − αηE−1G− α2E−1ZTZ)−1E−1ZT . (27)
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Our Method (3): Graph Construction
Since P̃ = αηE−1G+α2E−1ZTZ has spectrum between (−1, 1), we have

(Ik − αηE−1G− α2E−1ZTZ)−1 =

∞∑
t=0

P̃ t. (28)

If we only keep the first two terms, i.e., t = 0 and t = 1, then we have an
approximation of W as:

W̃ = ZE−1ZT +αηZE−1GE−1ZT + α2ZE−1ZTZE−1ZT (29)

Rather than storing n× n graph matrices W and W̃ , we only need to
store the n× k matrix Z, k× k diagonal matrix E and k× k matrix ZTZ.
We can easily use Z,E,ZTZ to get graph matrices (27) and (29). Our
graph matrix constructions are very efficient for large-scale datasets.
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Our Method (4): SSL finding labels for unlabel data

LGC-based approach, by solving the following optimization:

min
Fu∈R(n−l)×c

trace(FTL(W )F ) +
λ2
2
‖F − Y ‖2fro (30)

where

F =

[
Fl
Fu

]
, and Y =

[
Yl
Yu

]
, and L(W ) =

[
L1(W ) L2(W )
LT2 (W ) L3(W )

]
. (31)

Taking derivative over Fu and setting gradient over Fu to 0, we get

(2L3(W ) + λ2In−l)Fu = λ2Yu − 2LT2 (W )Fl. (32)

Let Fu = [F 1
u , · · · , F cu], and λ2Yu − 2LT2 (W )Fl = [b1, · · · , bc].

Problem (32) can be decomposed into c linear equations that can be
solved by conjugate gradient (CG) method in parallel:

(2L3(W ) + λ2In−l)F
i
u = bi, ∀i = 1, · · · , c. (33)

For very large number of classes, our method is very efficient.
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Our Method (4): SSL finding labels for unlabel data

We would like to study the condition number of the coefficient matrix
2L3(W ) + λ2In−l in (33). First, the eigenvalues of matrix L3(W ) are
shown in the following proposition:

Proposition

Suppose α ∈ (0, 1). Let W and W̃ be the graph matrices defined in (27)
and (29) respectively. Let L3(W ) be the sub block matrix of L(W ) with

graph input matrix W or W̃ .

For W , we have the row sums of matrix W are in [0, 1
1−α ]. The

eigenvalues of L3(W ) are real and lie in [0, 2
1−α ].

For W̃ , we have the row sums of matrix W̃ are in [0, 1 + α]. The

eigenvalues of L3(W̃ ) are real and lie in [0, 2(1 + α)].

If parameters λ2 and α are properly chosen, the coefficient matrices
2L3(W ) + λ2In−l and 2L3(W̃ ) + λ2In−l will not be ill-conditioned. The
CG method will solve the linear equations very efficiently.
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Our Method (4): SSL finding labels for unlabel data

AGR-based approach: Assume F = ZA where A ∈ Rk×c, i.e., we
represent the predicted label F as a linear function of Z. And let

Z =

[
Zl
Zu

]
. We have

trace(FTL(W )F ) +
λ2
2
‖F − Y ‖2fro

= trace(ATZTL(W )ZA) +
λ2
2
‖ZA− Y ‖2fro (34)

If we minimize above function over variable A, we have

A∗ = λ2(2ZTL(W )Z + λ2Z
TZ)−1(ZTY ) (35)

Here the inverse is defined for a k × k matrix.
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Algorithm

Li Wang (University of Texas at Arlington) Large SSL via GSL over HDP August 20, 2020 24 / 33



Our Method (5): Algorithm Complexity
The complexity of Algorithm 1 is determined by two subproblems.

First, finding the high-dense points and the tree structure learning
take the complexities of the following three components: 1) the
complexity of Kruskal’s algorithm requires O(k2d) for computing the
fully connected graph and O(k2 log k) for finding the spanning tree
G; 2) computing the soft-assignment matrix Z requires O(nkd); 3)
computing the inverse of a k by k matrix (Ξ + λ1L)−1 requires O(k3)
and doing matrix multiplication to get C takes O(nkd+ dk2) numeric
operations. Therefore, the total complexity of each iteration is
O(k3 + nkd+ dk2).

The second subproblem is the inference of the unlabeled data. The
computation complexity of each CG iteration requires O(nk + k2) if

graph W is constructed by (27) and O(nk + k2 + k3) if graph W̃ is
constructed by (29). The complexity of computing (35) needs
O(k3 + nk(k + c)).

Hence, the complexity of Algorithm 1 is linear with n, no matter which
inference method, either LGC-based or AGR-based.
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Experimental Settings

Table: Datasets used in the experiments

Data Set n c d

three-moon 1,500 3 100
USPS-2 1,500 2 241
USPS 9,298 10 256

Pendigits 10,992 10 16
Letter 15,000 26 16

MNIST 70,000 10 784
EMNIST-Digits 280,000 10 784
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Computational Results for Three-moon data

Table: Average accuracies with standard deviations of nine methods over 10
randomly drawn labeled data on three-moon data in terms of varied number of
labels. Best results are in bold.

method l=3 l=10 l=25

LGC 94.19 ± 6.69 98.96 ± 0.49 99.02 ± 0.30
TVRF(1) 90.49 ± 4.80 97.48 ± 1.15 99.53 ± 0.03
TVRF(2) 99.52 ± 0.07 99.47 ± 0.09 99.46 ± 0.11

AGR(Gauss) 99.36 ± 0.32 99.46 ± 0.20 99.51 ± 0.25
AGR(LAE) 97.74 ± 1.41 98.68 ± 0.31 98.66 ± 0.39

HiDeGL(L-approx) 99.85 ± 0.06 99.86 ± 0.07 99.88 ± 0.06
HiDeGL(L-accurate) 99.85 ± 0.05 99.85 ± 0.06 99.88 ± 0.05
HiDeGL(A-approx) 99.87 ± 0.05 99.86 ± 0.07 99.88 ± 0.05

HiDeGL(A-accurate) 99.85 ± 0.09 99.86 ± 0.06 99.87 ± 0.05
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Computational Results for MINST and USPS data
Table: Average accuracies with standard deviations of compared methods over 10
randomly drawn labeled data.

Method l = 10 l = 50 l = 100 l = 150

MNIST
LGC 66.66 ± 5.52 83.76 ± 2.33 87.84 ± 1.11 89.41 ± 0.88
TVRF(1) 53.44 ± 6.73 74.35 ± 1.64 78.50 ± 1.70 81.27 ± 1.38
TVRF(2) 61.73 ± 6.12 78.05 ± 2.58 84.70 ± 1.20 86.19 ± 0.95
AGR (Gauss) 51.97 ± 4.15 76.05 ± 4.37 79.26 ± 0.68 80.32 ± 1.41
AGR (LAE) 52.29 ± 3.92 76.97 ± 4.37 80.33 ± 0.93 81.30 ± 1.45
HiDeGL(L-approx) 75.69 ± 4.69 85.51 ± 1.94 87.70 ± 0.66 89.48 ± 0.63
HiDeGL(L-accurate) 75.73 ± 4.69 85.51 ± 1.95 87.72 ± 0.65 89.50 ± 0.64
HiDeGL(A-approx) 72.95 ± 3.83 85.22 ± 1.19 87.85 ± 1.08 89.08 ± 0.72
HiDeGL(A-accurate) 72.95 ± 3.83 85.21 ± 1.19 87.86 ± 1.07 89.08 ± 0.73

USPS
LGC 83.17 ± 5.24 93.90 ± 0.73 94.90 ± 0.30 95.04 ± 0.39
TVRF(1) 63.36 ± 6.90 81.87 ± 1.78 84.73 ± 0.95 85.58 ± 0.69
TVRF(2) 70.05 ± 7.52 81.65 ± 1.59 88.96 ± 0.19 88.90 ± 0.21
AGR(Gauss) 63.89 ± 10.30 93.35 ± 2.52 94.38 ± 0.48 94.77 ± 0.30
AGR(LAE) 63.51 ± 10.23 93.05 ± 2.39 94.31 ± 0.57 94.52 ± 0.36
HiDeGL(L-approx) 89.53 ± 5.46 94.96 ± 0.92 95.41 ± 0.26 95.55 ± 0.46
HiDeGL(L-accurate) 89.81 ± 4.80 94.96 ± 0.94 95.41 ± 0.26 95.53 ± 0.48
HiDeGL(A-approx) 91.42 ± 3.81 95.37 ± 0.36 95.50 ± 0.23 95.60 ± 0.25
HiDeGL(A-accurate) 91.36 ± 3.86 95.38 ± 0.36 95.49 ± 0.22 95.59 ± 0.25
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Computational Results for Pendigits and Letter data
Table: Average accuracies with standard deviations of compared methods over 10
randomly drawn labeled data.

Method l = 10 l = 50 l = 100 l = 150

Pendigits
LGC 80.97 ± 7.41 93.21 ± 1.99 94.44 ± 1.39 95.89 ± 1.02
TVRF(1) 43.57 ± 4.20 59.52 ± 2.11 66.23 ± 2.57 74.69 ± 1.76
TVRF(2) 52.50 ± 4.05 83.39 ± 2.86 89.54 ± 2.80 92.99 ± 1.62
AGR(Gauss) 52.56 ± 6.85 91.73 ± 1.95 95.01 ± 1.03 96.43 ± 0.85
AGR(LAE) 52.52 ± 6.67 91.60 ± 1.88 94.59 ± 1.24 96.18 ± 1.21
HiDeGL(L-approx) 85.26 ± 4.09 93.36 ± 1.80 95.54 ± 1.00 96.44 ± 1.06
HiDeGL(L-accurate) 85.72 ± 4.08 93.24 ± 1.77 95.56 ± 0.91 96.36 ± 1.13
HiDeGL(A-approx) 83.01 ± 7.35 93.67 ± 2.00 95.44 ± 1.72 96.13 ± 0.86
HiDeGL(A-accurate) 82.89 ± 6.97 93.67 ± 2.00 95.44 ± 1.74 96.14 ± 0.87
Method l = 26 l = 52 l = 104 l = 156

Letter
LGC 31.12 ± 4.08 39.21 ± 2.54 52.46 ± 2.19 58.35 ± 2.14
TVRF(1) 19.49 ± 2.34 26.06 ± 2.85 33.23 ± 10.47 37.94 ± 11.99
TVRF(2) 22.73 ± 2.40 33.33 ± 4.08 45.79 ± 2.75 51.33 ± 1.47
AGR(Gauss) 25.44 ± 2.98 36.33 ± 2.31 49.18 ± 2.51 56.42 ± 1.99
AGR(LAE) 25.64 ± 2.68 36.42 ± 2.29 49.28 ± 2.55 56.43 ± 2.03
HiDeGL(L-approx) 31.89 ± 4.53 41.34 ± 2.73 53.32 ± 2.24 58.41 ± 1.29
HiDeGL(L-accurate) 32.02 ± 4.54 41.44 ± 2.81 53.17 ± 2.42 58.44 ± 1.35
HiDeGL(A-approx) 33.58 ± 4.43 42.02 ± 2.83 54.30 ± 1.97 58.97 ± 1.71
HiDeGL(A-accurate) 33.59 ± 4.42 42.03 ± 2.80 54.21 ± 1.34 58.57 ± 1.70
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Computational Results for EMINST data

Table: Average accuracies with standard deviations and CPU time of compared
methods over 10 randomly drawn labeled data.

Method l = 10 l = 50 l = 100 l = 150

Accuracy (k = 500)
ARG(Gauss) 47.25 ± 5.39 76.64 ± 1.22 80.41 ± 1.06 82.72 ± 0.98
ARG(LAE) 47.63 ± 5.07 78.06 ± 1.34 81.24 ± 0.85 83.32 ± 0.80
HiDeGL(L-approx) 59.72 ± 8.34 80.63 ± 2.30 84.18 ± 1.56 85.37 ± 0.97
HiDeGL(L-accurate) 60.74 ± 8.18 80.73 ± 1.74 84.18 ± 1.56 85.37 ± 0.97
HiDeGL(A-approx) 67.58 ± 7.80 80.79 ± 1.88 84.04 ± 1.55 85.24 ± 0.95
HiDeGL(A-accurate) 67.69 ± 7.74 80.79 ± 1.88 84.04 ± 1.55 85.24 ± 0.95

CPU Time (in seconds)
AGR(Gauss) 6.4 ±0.44 6.75 ± 0.48 6.53 ± 0.58 6.41 ± 0.33
AGR(LAE) 3430.1 ± 70.3 3409.9 ± 94.2 3368.5 ± 122.3 3391.9 ± 36.4
HiDeGL(L-approx) 242.7 ± 70.4 240.7 ± 43.9 229.7 ± 37.6 257.7 ± 44.0
HiDeGL(L-accurate) 241.7 ± 70.4 239.8 ± 43.8 228.7 ± 37.6 256.7 ± 43.9
HiDeGL(A-approx) 244.0 ± 70.5 243.8 ± 41.6 231.9 ± 36.3 259.1 ± 44.4
HiDeGL(A-accurate) 240.6 ± 70.4 240.4 ± 41.6 228.7 ± 36.4 255.4 ± 44.5
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Parameter Sensitivity Analysis
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Figure: Parameter sensitivity analysis of HiDeGL(L-accurate) on USPS-2 by
varying the corresponding parameters λ1, σ, α, η respectively with k = 500 and
λ2 ∈ {10−3, 10−2} in terms of the labeled set l ∈ {10, 50, 100, 150}.
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Thank you!
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